Discrete derivatives and symmetries of difference equations

نویسنده

  • D. Levi
چکیده

We show on the example of the discrete heat equation that for any given discrete derivative we can construct a nontrivial Leibniz rule suitable to find the symmetries of discrete equations. In this way we obtain a symmetry Lie algebra, defined in terms of shift operators, isomorphic to that of the continuous heat equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

Symbolic Computation of Polynomial Conserved Densities, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations

Algorithms for the symbolic computation of polynomial conserved densities, fluxes, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations are presented. In the algorithms we use discrete versions of the Fréchet and variational derivatives, as well as discrete Euler and homotopy operators. The algorithms are illustrated for prototypical nonline...

متن کامل

Lie Symmetries of Difference Equations

The discrete heat equation is worked out in order to illustrate the search of symmetries of difference equations. It is paid an special attention to the Lie structure of these symmetries, as well as to their dependence on the derivative discretization. The case of q–symmetries for discrete equations in a q–lattice is also considered.

متن کامل

Discrete q–derivatives and symmetries of q–difference equations

In this paper we extend the umbral calculus, developed to deal with difference equations on uniform lattices, to q-difference equations. We show that many of the properties considered for shift invariant difference operators satisfying the umbral calculus can be implemented to the case of the q-difference operators. This qumbral calculus can be used to provide solutions to linear q-difference e...

متن کامل

Lie discrete symmetries of lattice equations

We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differentialdifference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlevé I equation and of the Toda lattice equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008